DC FieldValueLanguage
dc.contributor.authorGuzmán, Osvaldoen_US
dc.contributor.authorTodorčević, Stevoen_US
dc.date.accessioned2023-06-08T12:14:13Z-
dc.date.available2023-06-08T12:14:13Z-
dc.date.issued2023-
dc.identifier.issn0168-0072-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5062-
dc.description.abstractIf B is a relational structure, define P(B) the partial order of all substructures of B that are isomorphic to it. Improving a result of Kurilić and the second author, we prove that if R is the random graph, then P(R) is forcing equivalent to S⁎R˙, where S is Sacks forcing and R˙ is an ω-distributive forcing that is not forcing equivalent to a σ-closed one. We also prove that P(H3) is forcing equivalent to a σ-closed forcing, where H3 is the generic triangle-free graph.en_US
dc.publisherElsevieren_US
dc.relation.ispartofAnnals of Pure and Applied Logicen_US
dc.subjectHenson graph | Poset of copies | Random graph | Sacks forcing | Ultrahomogenous graphsen_US
dc.titleForcing with copies of the Rado and Henson graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apal.2023.103286-
dc.identifier.scopus2-s2.0-85160258197-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage103286-
dc.relation.issue8-
dc.relation.volume174-
dc.description.rank~M21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

1
checked on Apr 3, 2025

Page view(s)

21
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.