DC Field | Value | Language |
---|---|---|
dc.contributor.author | Guzmán, Osvaldo | en_US |
dc.contributor.author | Todorčević, Stevo | en_US |
dc.date.accessioned | 2023-06-08T12:14:13Z | - |
dc.date.available | 2023-06-08T12:14:13Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0168-0072 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5062 | - |
dc.description.abstract | If B is a relational structure, define P(B) the partial order of all substructures of B that are isomorphic to it. Improving a result of Kurilić and the second author, we prove that if R is the random graph, then P(R) is forcing equivalent to S⁎R˙, where S is Sacks forcing and R˙ is an ω-distributive forcing that is not forcing equivalent to a σ-closed one. We also prove that P(H3) is forcing equivalent to a σ-closed forcing, where H3 is the generic triangle-free graph. | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Annals of Pure and Applied Logic | en_US |
dc.subject | Henson graph | Poset of copies | Random graph | Sacks forcing | Ultrahomogenous graphs | en_US |
dc.title | Forcing with copies of the Rado and Henson graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.apal.2023.103286 | - |
dc.identifier.scopus | 2-s2.0-85160258197 | - |
dc.contributor.affiliation | Mathematics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 103286 | - |
dc.relation.issue | 8 | - |
dc.relation.volume | 174 | - |
dc.description.rank | ~M21 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0003-4543-7962 | - |
SCOPUSTM
Citations
1
checked on Apr 3, 2025
Page view(s)
21
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.