DC Field | Value | Language |
---|---|---|
dc.contributor.author | Filipovski, Slobodan | en_US |
dc.contributor.author | Stevanović, Dragan | en_US |
dc.date.accessioned | 2023-06-06T08:44:19Z | - |
dc.date.available | 2023-06-06T08:44:19Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0024-3795 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5040 | - |
dc.description.abstract | Let G=(V,E) be a finite undirected graph of order n and of size m. Let Δ and δ be the largest and the smallest degree of G, respectively. The spectral radius of G is the largest eigenvalue of the adjacency matrix of the graph G. In this note we give new bounds on the spectral radius of {C3,C4}-free graphs in terms of m,n,Δ and δ. Computer search shows that in most of the cases the bounds derived in this note are better than the existing bounds. | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Linear Algebra and Its Applications | en_US |
dc.subject | Adjacency matrix | Lower bounds | Spectral radius | Upper bounds | en_US |
dc.title | A note on the bounds for the spectral radius of graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2023.02.021 | - |
dc.identifier.scopus | 2-s2.0-85150076952 | - |
dc.contributor.affiliation | Mathematics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 1 | - |
dc.relation.lastpage | 9 | - |
dc.relation.volume | 667 | - |
dc.description.rank | ~M21 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0003-2908-305X | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.