DC FieldValueLanguage
dc.contributor.authorFilipovski, Slobodanen_US
dc.contributor.authorStevanović, Draganen_US
dc.date.accessioned2023-06-06T08:44:19Z-
dc.date.available2023-06-06T08:44:19Z-
dc.date.issued2023-
dc.identifier.issn0024-3795-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5040-
dc.description.abstractLet G=(V,E) be a finite undirected graph of order n and of size m. Let Δ and δ be the largest and the smallest degree of G, respectively. The spectral radius of G is the largest eigenvalue of the adjacency matrix of the graph G. In this note we give new bounds on the spectral radius of {C3,C4}-free graphs in terms of m,n,Δ and δ. Computer search shows that in most of the cases the bounds derived in this note are better than the existing bounds.en_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectAdjacency matrix | Lower bounds | Spectral radius | Upper boundsen_US
dc.titleA note on the bounds for the spectral radius of graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2023.02.021-
dc.identifier.scopus2-s2.0-85150076952-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage1-
dc.relation.lastpage9-
dc.relation.volume667-
dc.description.rank~M21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

Page view(s)

21
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.