DC FieldValueLanguage
dc.contributor.authorHe, Xiaocongen_US
dc.contributor.authorFeng, Lihuaen_US
dc.contributor.authorStevanović, Draganen_US
dc.date.accessioned2023-06-05T09:23:13Z-
dc.date.available2023-06-05T09:23:13Z-
dc.date.issued2023-
dc.identifier.issn1537-9582-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5032-
dc.description.abstractThe (k+1)-core of a graph G, denoted by Ck+1 (G), is the subgraph obtained by repeatedly removing any vertex of degree less than or equal to k. Ck+1 (G) is the unique induced subgraph of minimum degree larger than k with a maximum number of vertices. For 1 ≤ k ≤ m ≤ n, we denote Rn,k,m = Kk ∨ (Km−k ∪ In−m). In this paper, we prove that Rn,k,m obtains the maximum spectral radius and signless Laplacian spectral radius among all n-vertex graphs whose (k + 1)-core has at most m vertices. Our result extends a recent theorem proved by Nikiforov [Electron. J. Linear Algebra, 27:250–257, 2014]. Moreover, we also present the bipartite version of our result.en_US
dc.publisherInternational Linear Algebra Societyen_US
dc.relationGraph theory and mathematical programming with applications in chemistry and computer scienceen_US
dc.relation.ispartofElectronic Journal of Linear Algebraen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAdjacency matrices | Bipartite graph | Core | Extremal graph theoryen_US
dc.titleTHE MAXIMUM SPECTRAL RADIUS OF GRAPHS WITH A LARGE COREen_US
dc.typeArticleen_US
dc.identifier.doi10.13001/ela.2023.7283-
dc.identifier.scopus2-s2.0-85149261042-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.grantno174033en_US
dc.relation.firstpage78-
dc.relation.lastpage89-
dc.relation.volume39-
dc.description.rank~M22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333-
crisitem.author.orcid0000-0003-2908-305X-
Files in This Item:
File Description SizeFormat
DStevanovic.pdf2.08 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 24, 2024

Page view(s)

31
checked on Nov 24, 2024

Download(s)

7
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons