DC FieldValueLanguage
dc.contributor.authorLukešević, Lidija Rehlickien_US
dc.contributor.authorJanev, Markoen_US
dc.contributor.authorNovaković, Branislavaen_US
dc.contributor.authorAtanacković, Teodoren_US
dc.date.accessioned2022-12-26T12:55:34Z-
dc.date.available2022-12-26T12:55:34Z-
dc.date.issued2022-
dc.identifier.issn0001-5970-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5006-
dc.description.abstractIn this paper, the dynamical behavior of the Euler-Bernoulli beam resting on a generalized Kelvin-Voigt-type viscoelastic foundation, subjected to a moving point load, is analyzed. Generalization is done in the sense of fractional derivatives of complex-order type. Mixed initial-boundary value problem is formulated, and the solution is given in the form of Fourier series with respect to space variable, where coefficients satisfy a certain system of ordinary fractional differential equations of complex fractional order with respect to time variable. Thermodynamical restrictions on the parameters of the model are also given. It is shown that those are sufficient for the existence and the uniqueness of the solution. The solution of the problem is expressed in closed form, by using the inverse Laplace transform method. A numerical example confirming the invoked theory is presented.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofActa Mechanicaen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMoving point load on a beam with viscoelastic foundation containing fractional derivatives of complex orderen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00707-022-03429-7-
dc.identifier.scopus2-s2.0-85143439059-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.description.rank~M22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.orcid0000-0003-3246-4988-
Files in This Item:
File Description SizeFormat
MJanev.pdf456.4 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 24, 2024

Page view(s)

41
checked on Nov 24, 2024

Download(s)

10
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons