DC Field | Value | Language |
---|---|---|
dc.contributor.author | Farah, Ilijas | en_US |
dc.contributor.author | Shelah, Saharon | en_US |
dc.date.accessioned | 2022-12-26T10:42:20Z | - |
dc.date.available | 2022-12-26T10:42:20Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 0002-9947 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5000 | - |
dc.description.abstract | We prove that, consistently with ZFC, no ultraproduct of countably infinite (or separable metric, non-compact) structures is isomorphic to a reduced product of countable (or separable metric) structures associated to the Fréchet filter. Since such structures are countably saturated, the Continuum Hypothesis implies that they are isomorphic when elementarily equivalent. | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.relation.ispartof | Transactions of the American Mathematical Society | en_US |
dc.subject | Cohen model | Continuum Hypothesis | Proper Forcing Axiom | reduced powers | saturated models | small basis | Ultrapowers | universal models | en_US |
dc.title | BETWEEN REDUCED POWERS AND ULTRAPOWERS, II | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1090/tran/8777 | - |
dc.identifier.scopus | 2-s2.0-85141723234 | - |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 9007 | - |
dc.relation.lastpage | 9034 | - |
dc.relation.issue | 12 | - |
dc.relation.volume | 375 | - |
dc.description.rank | ~M21 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0001-7703-6931 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.