DC FieldValueLanguage
dc.contributor.authorFarah, Ilijasen_US
dc.contributor.authorShelah, Saharonen_US
dc.date.accessioned2022-12-26T10:42:20Z-
dc.date.available2022-12-26T10:42:20Z-
dc.date.issued2022-
dc.identifier.issn0002-9947-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5000-
dc.description.abstractWe prove that, consistently with ZFC, no ultraproduct of countably infinite (or separable metric, non-compact) structures is isomorphic to a reduced product of countable (or separable metric) structures associated to the Fréchet filter. Since such structures are countably saturated, the Continuum Hypothesis implies that they are isomorphic when elementarily equivalent.en_US
dc.publisherAmerican Mathematical Societyen_US
dc.relation.ispartofTransactions of the American Mathematical Societyen_US
dc.subjectCohen model | Continuum Hypothesis | Proper Forcing Axiom | reduced powers | saturated models | small basis | Ultrapowers | universal modelsen_US
dc.titleBETWEEN REDUCED POWERS AND ULTRAPOWERS, IIen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/tran/8777-
dc.identifier.scopus2-s2.0-85141723234-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage9007-
dc.relation.lastpage9034-
dc.relation.issue12-
dc.relation.volume375-
dc.description.rank~M21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-7703-6931-
Show simple item record

Page view(s)

22
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.