DC FieldValueLanguage
dc.contributor.authorIkodinović, Nebojšaen
dc.contributor.authorOgnjanović, Zoranen
dc.contributor.authorPerović, Aleksandaren
dc.contributor.authorRašković, Miodragen
dc.date.accessioned2020-02-18T20:06:21Z-
dc.date.available2020-02-18T20:06:21Z-
dc.date.issued2020-04-01en
dc.identifier.issn0168-0072en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4-
dc.description.abstractWe study propositional probabilistic logics (LPP–logics) with probability operators of the form P≥r (“the probability is at least r”) with σ–additive semantics. For regular infinite cardinals κ and λ, the probabilistic logic LPPκ,λ has λ propositional variables, allows conjunctions of <κ formulas, and allows iterations of probability operators. LPPκ,λ,2 denotes the fragment of LPPκ,λ where iterations of probability operators is not allowed. Besides the well known non-compactness of LPP–logics, we show that LPPκ,λ,2–logics are not countably compact for any λ≥ω1 and any κ, and that are not 2ℵ0+–compact for κ≥ω1 and any λ. We prove the equivalence of our adaptation of the Hoover's continuity rule (Rule (5) in [13]) and Goldblat's Countable Additivity Rule [9] and show their necessity for complete axiomatization with respect to the class of all σ–additive models. The main result is the strong completeness theorem for countable fragments LPPA and LPPA,2 of LPPω1,ω.en
dc.relation.ispartofAnnals of Pure and Applied Logicen
dc.subjectCompleteness | Probability logic | Sigma-additivityen
dc.titleCompleteness theorems for σ–additive probabilistic semanticsen
dc.typeArticleen
dc.identifier.doi10.1016/j.apal.2019.102755en
dc.identifier.scopus2-s2.0-85077989477en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage102755-
dc.relation.issue4-
dc.relation.volume171-
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2508-6480-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 24, 2024

Page view(s)

25
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.