DC FieldValueLanguage
dc.contributor.authorDekić, Andrijanaen_US
dc.contributor.authorBabić, Marijanaen_US
dc.contributor.authorVukmirović, Srdjanen_US
dc.date.accessioned2022-12-26T09:52:58Z-
dc.date.available2022-12-26T09:52:58Z-
dc.date.issued2022-
dc.identifier.issn1660-5446-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4997-
dc.description.abstractIt is well known that CHn has the structure of a solvable Lie group with left invariant metric of constant holomorphic sectional curvature. In this paper we give the full classification of all possible left invariant Riemannian metrics on this Lie group. We prove that each of those metrics is of constant negative scalar curvature, only one of them being Einstein (up to isometry and scaling).en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofMediterranean Journal of Mathematicsen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectComplex hyperbolic space | left invariant metric | Ricci soliton | solvmanifolden_US
dc.titleClassification of Left Invariant Riemannian Metrics on Complex Hyperbolic Spaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00009-022-02152-w-
dc.identifier.scopus2-s2.0-85138215447-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage232-
dc.relation.volume19-
dc.description.rank~M21-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.orcid0000-0001-6955-0930-
crisitem.author.orcid0000-0001-5635-7605-
Files in This Item:
File Description SizeFormat
ADekic.pdf428.69 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on Apr 24, 2024

Page view(s)

35
checked on Apr 24, 2024

Download(s)

15
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons