DC FieldValueLanguage
dc.contributor.authorJočić, Draganen_US
dc.contributor.authorŠtajner-Papuga, Ivanaen_US
dc.date.accessioned2022-12-22T10:35:21Z-
dc.date.available2022-12-22T10:35:21Z-
dc.date.issued2022-
dc.identifier.issn0354-5180-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4989-
dc.description.abstractThe conditional distributivity, that is distributivity equation with additional restriction imposed on the domain of aggregation operations, is an issue of interest for many different theoretical and practical areas, special for integration theory and utility theory. This paper presents new results on this specific form of distributivity for semi-t-operators over conjunctive uninorms. Since the observed class of uninorms is rather wide and includes not only the continuous case, the presented research is an extension of some well-known results and provides wider classes of solutions.en_US
dc.publisherFaculty of Sciences and Mathematics, University of Nišen_US
dc.relation.ispartofFilomaten_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleConditional Distributivity of Semi-t-operators Over Conjunctive Uninormsen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL2213525J-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage4525-
dc.relation.lastpage4538-
dc.relation.issue13-
dc.relation.volume36-
dc.description.rankM22-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.orcid0000-0003-4574-5228-
Files in This Item:
File Description SizeFormat
DJocic.pdf231.9 kBAdobe PDFView/Open
Show simple item record

Page view(s)

44
checked on May 9, 2024

Download(s)

22
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons