DC FieldValueLanguage
dc.contributor.authorMilovanović, Milošen_US
dc.contributor.authorSaulig, Nicolettaen_US
dc.date.accessioned2022-12-21T16:10:20Z-
dc.date.available2022-12-21T16:10:20Z-
dc.date.issued2022-
dc.identifier.issn2227-7390-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4972-
dc.description.abstractThe link between classical and quantum theories is discussed in terms of extensional and intensional viewpoints. The paper aims to bring evidence that classical and quantum probabilities are related by intensionalization, which means that by abandoning sets from classical probability one should obtain quantum theory. Unlike the extensional concept of a set, the intensional probability is attributed to the quantum ensemble, which is contextually dependent. The contextuality offers a consistent realization of the measurement problem, which should require the existence of the time operator. The time continuum by Brouwer has satisfied such a requirement, which makes it fundamental to mathematical physics. The statistical model it provides has been proven tremendously useful in a variety of applications.en_US
dc.publisherMDPIen_US
dc.relation.ispartofMathematicsen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectmeasurement problem | quantum ensemble | quantum state | time continuum | time operatoren_US
dc.titleAn Intensional Probability Theory: Investigating the Link between Classical and Quantum Probabilities †en_US
dc.typeArticleen_US
dc.identifier.doi10.3390/math10224294-
dc.identifier.scopus2-s2.0-85142492079-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage4294-
dc.relation.volume10-
dc.description.rank~M21a-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextWith Fulltext-
crisitem.author.orcid0000-0002-2909-451X-
Files in This Item:
File Description SizeFormat
MMilovanovic.pdf1.11 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 7, 2024

Page view(s)

23
checked on Dec 7, 2024

Download(s)

15
checked on Dec 7, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons