Authors: Šešelja, Branimir
Tepavčević, Andreja 
Affiliations: Computer Science 
Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Lattice-Valued Algebraic Structures Via Residuated Maps
Series/Report no.: Studies in Computational Intelligence
First page: 7
Last page: 13
Related Publication(s): Computational Intelligence and Mathematics for Tackling Complex Problems 3
Conference: 12th European Symposium on Computational Intelligence and Mathematics, ESCIM 2020, Budapest4-7 October 2020
Issue Date: 2022
Rank: M33
ISBN: 978-3-030-74969-9
ISSN: 1860-949X
DOI: 10.1007/978-3-030-74970-5_2
It is proved recently that cuts of a lattice valued fuzzy set determine a residuated map from the codomain lattice to the power set of the domain ordered dually to inclusion. Conversely, every residuated map from a complete lattice to the power set of the domain determines a lattice valued fuzzy set whose cuts coincide with the values of that map. These connections are applied here to the lattice valued algebraic structures and in particular to Ω-algebras, with a special reference to separation property.
Keywords: Cuts | Lattice valued fuzzy algebraic structures | Residuated maps | Ω-algebras
Publisher: Springer Link

Show full item record

Page view(s)

checked on May 9, 2024

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.