DC FieldValueLanguage
dc.contributor.authorStević, Stevoen_US
dc.contributor.authorEl-Sayed Ahmed, A.en_US
dc.contributor.authorIričanin, Bratislaven_US
dc.contributor.authorKosmala, Witolden_US
dc.date.accessioned2022-12-12T12:43:32Z-
dc.date.available2022-12-12T12:43:32Z-
dc.date.issued2022-
dc.identifier.issn1029-242X-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4954-
dc.description.abstractBy using a comparison method and some difference inequalities we show that the following higher order difference equation xn+k=1f(xn+k−1,…,xn),n∈N, where k∈ N, f: [0 , + ∞) k→ [0 , + ∞) is a homogeneous function of order strictly bigger than one, which is nondecreasing in each variable and satisfies some additional conditions, has unbounded solutions, presenting a large class of such equations. The class can be used as a useful counterexample in dealing with the boundedness character of solutions to some difference equations. Some analyses related to such equations and a global convergence result are also given.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofJournal of Inequalities and Applicationsen_US
dc.subjectDifference equation | Homogeneous function | Unbounded solutionsen_US
dc.titleHigher order difference equations with homogeneous governing functions nonincreasing in each variable with unbounded solutionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s13660-022-02811-2-
dc.identifier.scopus2-s2.0-85131838606-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage81-
dc.relation.issue1-
dc.relation.volume2022-
dc.description.rank~M21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

Page view(s)

14
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.