DC FieldValueLanguage
dc.contributor.authorPerović, Aleksandaren
dc.contributor.authorDoder, Draganen
dc.contributor.authorOgnjanović, Zoranen
dc.date.accessioned2020-02-18T20:06:28Z-
dc.date.available2020-02-18T20:06:28Z-
dc.date.issued2012-03-15en
dc.identifier.isbn978-3-642-28472-4en
dc.identifier.issn0302-9743en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/48-
dc.description.abstractArguably, [0,1]-valued evaluation of formulas is dominant form of representation of uncertainty, believes, preferences and so on despite some theoretical issues - most notable one is incompleteness of any unrestricted finitary formalization. We offer an infinitary propositional logic (formulas remain finite strings of symbols, but we use infinitary inference rules with countably many premises, primarily in order to address the incompleteness issue) which is expressible enough to capture finitely additive probabilistic evaluations, some special cases of truth functionality (evaluations in Lukasiewicz, product, Gödel and logics) and the usual comparison of such evaluations. The main technical result is the proof of completeness theorem (every consistent set of formulas is satisfiable).en
dc.publisherSpringer Link-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectCompleteness theorems | Finite strings | Inference rules | Probabilistic evaluation | Propositional formulas | Propositional logic-
dc.titleOn real-valued evaluation of propositional formulasen
dc.typeConference Paperen
dc.relation.conference7th International Symposium on Foundations of Information and Knowledge Systems, FoIKS 2012; Kiel; Germany; 5 March 2012 through 9 March 2012-
dc.identifier.doi10.1007/978-3-642-28472-4_15en
dc.identifier.scopus2-s2.0-84858017067en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage264-
dc.relation.lastpage277-
dc.relation.volume7153 LNCS-
dc.description.rankM33-
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2508-6480-
Show simple item record

SCOPUSTM   
Citations

1
checked on Apr 1, 2025

Page view(s)

23
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.