DC FieldValueLanguage
dc.contributor.authorKratica, Jozefen
dc.contributor.authorKovačević-Vujčić, Veraen
dc.contributor.authorČangalović, Mirjanaen
dc.contributor.authorStojanović, Milicaen
dc.date.accessioned2020-04-26T19:14:54Z-
dc.date.available2020-04-26T19:14:54Z-
dc.date.issued2012-06-01en
dc.identifier.issn0096-3003en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/489-
dc.description.abstractIn this paper we consider two similar optimization problems on graphs: the strong metric dimension problem and the problem of determining minimal doubly resolving sets. We prove some properties of strong resolving sets and give an integer linear programming formulation of the strong metric dimension problem. These results are used to derive explicit expressions in terms of the dimension n, for the strong metric dimension of two classes of convex polytopes Dn and Tn. On the other hand, we prove that minimal doubly resolving sets of Dn and Tn have constant cardinality for n>7.en
dc.publisherElsevier-
dc.relationGraph theory and mathematical programming with applications in chemistry and computer science-
dc.relation.ispartofApplied Mathematics and Computationen
dc.subjectConvex polytopes | Minimal doubly resolving set | Strong metric dimensionen
dc.titleMinimal doubly resolving sets and the strong metric dimension of some convex polytopesen
dc.typeArticleen
dc.identifier.doi10.1016/j.amc.2012.03.047en
dc.identifier.scopus2-s2.0-84860478404en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage9790en
dc.relation.lastpage9801en
dc.relation.issue19en
dc.relation.volume218en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333-
crisitem.author.orcid0000-0002-9752-0971-
Show simple item record

SCOPUSTM   
Citations

67
checked on Nov 23, 2024

Page view(s)

18
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.