DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren_US
dc.contributor.authorGajić, Borislaven_US
dc.contributor.authorJovanović, Božidaren_US
dc.date.accessioned2022-11-29T10:50:59Z-
dc.date.available2022-11-29T10:50:59Z-
dc.date.issued2022-07-01-
dc.identifier.issn1560-3547-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4878-
dc.description.abstractWe first construct nonholonomic systems of n homogeneous balls (Formula presented.) with centers (Formula presented.) and with the same radius r that are rolling without slipping around a fixed sphere S0 with center O and radius R. In addition, it is assumed that a dynamically nonsymmetric sphere S of radius R + 2r and the center that coincides with the center O of the fixed sphere S0 rolls without slipping over the moving balls B1, ..., Bn. We prove that these systems possess an invariant measure. As the second task, we consider the limit, when the radius R tends to infinity. We obtain a corresponding planar problem consisting of n homogeneous balls B1, ..., Bn with centers B1, ..., Bn and the same radius r that are rolling without slippingover a fixed plane Σ0, and a moving plane Σ that moves without slipping over the homogeneous balls. We prove that this system possesses an invariant measure and that it is integrable in quadratures according to the Euler – Jacobi theorem.en_US
dc.publisherSpringer Linken_US
dc.relationIntegrability and Extremal Problems in Mechanics, Geometry and Combinatoricsen_US
dc.relation.ispartofRegular and Chaotic Dynamicsen_US
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectintegrability | invariant measure | nonholonimic dynamics | rolling without slipping; Mathematical Physics; Mathematical Physics; Mathematics - Dynamical Systems; Mathematics - Mathematical Physics; Nonlinear Sciences - Exactly Solvable and Integrable Systems; 37J60, 37J35, 70E40, 70F25en_US
dc.titleSpherical and Planar Ball Bearings — Nonholonomic Systems with Invariant Measuresen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S1560354722040037-
dc.identifier.scopus2-s2.0-85135270868-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage424-
dc.relation.lastpage442-
dc.description.rank~M22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-0295-4743-
crisitem.author.orcid0000-0002-1463-0113-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

3
checked on Dec 20, 2024

Page view(s)

32
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons