DC FieldValueLanguage
dc.contributor.authorMatijević, Lukaen_US
dc.date.accessioned2022-11-28T13:54:44Z-
dc.date.available2022-11-28T13:54:44Z-
dc.date.issued2022-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4872-
dc.description.abstractIn this paper, we consider the problem of feature selection for multi-label data. Multi-label feature selection is a process of finding the appropriate subset of features that allows multi-label classifiers to find better solutions in a shorter amount of time. For this purpose, we developed the Bee Colony Optimization algorithm based on mutual information and compared it with other metaheuristics from literature, i.e. Ant Colony Optimization and Memetic Algorithm. After testing it on several benchmark instances, we concluded that our approach outperforms the other two methods.en_US
dc.publisherFaculty of Economics and Business, University of Belgradeen_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectCombinatorial optimization | Metaheuristics | Mutual information | Classificationen_US
dc.titleBee Colony Optimization for Multi-Label Feature Selectionen_US
dc.typeConference Paperen_US
dc.relation.conferenceXLIX International Symposium on Operational Research SYM-OP-IS 2022, Vrnjačka Banja, 19-22.09.2022.en_US
dc.identifier.urlhttps://www.mi.sanu.ac.rs/~luka/resources/papers/BEE%20COLONY%20OPTIMIZATION%20FOR%20MULTI-LABEL%20FEATURE%20SELECTION.pdf-
dc.contributor.affiliationComputer Scienceen_US
dc.relation.firstpage243-
dc.relation.lastpage248-
dc.description.rankM33-
item.grantfulltextnone-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-4575-6720-
Show simple item record

Page view(s)

23
checked on Dec 4, 2024

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons