DC FieldValueLanguage
dc.contributor.authorVesić, Nenaden_US
dc.contributor.authorMihajlović, Aleksandraen_US
dc.date.accessioned2022-11-25T13:35:39Z-
dc.date.available2022-11-25T13:35:39Z-
dc.date.issued2022-
dc.identifier.issn0352-9665-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4863-
dc.description.abstractThis research is motivated by similarity of basic equations of $F$-planar mappings of symmetric affine connection space $\mathbb A_N$ involved by J. Mikes and N. S. Sinyukov, and which have been studied by Mikes research group (I. Hinterleitner, P. Pe\v ska, \linebreak J. Str\'ansk\'a) and almost geodesic mappings (specially almost geodesic mappings of the second type) ofthe space $\mathbb A_N$ involved by N. S. Sinyukov and which have been studied by many authors. We used the formulas obtained by N. O. Vesic to obtain invariants for special $F$-planar mappings in this article. These invariants are analogous to invariants of geodesic mappings (the Thomas projective parameter and the Weyl projective tensor).en_US
dc.publisherUniversity of Nišen_US
dc.relation.ispartofFacta Universitatis, Ser. Math. Inform.en_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectF-planar mapping, invariant, affine connection spacesen_US
dc.titleInvariants for F-Planar Mappings of Symmetric Affine Connection Spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.22190/FUMI210921019V-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage283-
dc.relation.lastpage293-
dc.relation.issue2-
dc.relation.volume37-
dc.description.rankM24-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7598-9058-
Show simple item record

Page view(s)

22
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons