DC FieldValueLanguage
dc.contributor.authorVesić, Nenaden_US
dc.contributor.authorMilenković, Vladislavaen_US
dc.contributor.authorStanković, Mićaen_US
dc.date.accessioned2022-11-25T13:27:22Z-
dc.date.available2022-11-25T13:27:22Z-
dc.date.issued2022-
dc.identifier.issn2075-1680-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4862-
dc.description.abstractTwo invariants for mappings of affine connection spaces with a special form of deformation tensors are obtained in this paper. We used the methodology of Vesić to obtain the form of these invariants. At the end of this paper, we used these forms to obtain two invariants for third-type almost-geodesic mappings of symmetric affine connection.en_US
dc.publisherMDPIen_US
dc.relation.ispartofAxiomsen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectaffine connection space | deformation tensor | geometric mapping | invariants of geometric mapping | Riemannian spaceen_US
dc.titleTwo Invariants for Geometric Mappingsen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/axioms11050239-
dc.identifier.scopus2-s2.0-85130916020-
dc.contributor.affiliationMathematicsen_US
dc.relation.firstpage239-
dc.relation.issue5-
dc.relation.volume11-
dc.description.rank~M22-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7598-9058-
Show simple item record

Page view(s)

44
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons