DC FieldValueLanguage
dc.contributor.authorBraga, Bruno M.en_US
dc.contributor.authorFarah, Ilijasen_US
dc.contributor.authorVignati, Alessandroen_US
dc.date.accessioned2022-09-12T14:41:34Z-
dc.date.available2022-09-12T14:41:34Z-
dc.date.issued2022-07-01-
dc.identifier.issn0373-0956-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4834-
dc.description.abstractWe generalize all known results on rigidity of uniform Roe algebras to the setting of arbitrary uniformly locally finite coarse spaces. For instance, we show that isomorphism between uniform Roe algebras of uniformly locally finite coarse spaces whose uniform Roe algebras contain only compact ghost projections implies that the base spaces are coarsely equivalent. Moreover, if one of the spaces has property A, then the base spaces are bijectively coarsely equivalent. We also provide a characterization for the existence of an embedding onto hereditary subalgebra in terms of the underlying spaces. As an application, we partially answer a question of White and Willett about Cartan subalgebras of uniform Roe algebras.en_US
dc.publisherAssociation des Annales de l'Institut Fourieren_US
dc.relation.ispartofAnnales de l'Institut Fourieren_US
dc.subjectCartan subalgebra | coarse geometry | Uniform Roe algebrasen_US
dc.titleGENERAL UNIFORM ROE ALGEBRA RIGIDITYen_US
dc.typeArticleen_US
dc.identifier.doi10.5802/aif.3461-
dc.identifier.scopus2-s2.0-85135915347-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage301-
dc.relation.lastpage337-
dc.relation.issue1-
dc.relation.volume72-
dc.description.rankM22-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-7703-6931-
Show simple item record

SCOPUSTM   
Citations

5
checked on Jun 11, 2024

Page view(s)

27
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.