DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ilić Stepić, Angelina | en_US |
dc.contributor.author | Knežević, Mateja | en_US |
dc.contributor.author | Ognjanović, Zoran | en_US |
dc.date.accessioned | 2022-09-12T14:17:42Z | - |
dc.date.available | 2022-09-12T14:17:42Z | - |
dc.date.issued | 2022-08-29 | - |
dc.identifier.issn | 0942-5616 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4832 | - |
dc.description.abstract | We give a sound and complete axiomatization of a probabilistic extension of intuitionistic logic. Reasoning with probability operators is also intuitionistic (in contradistinction to other works on this topic), i.e., measure functions used for modeling probability operators are partial functions. Finally, we present a decision procedure for our logic, which is a combination of linear programming and an intuitionistic tableaux method. | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | Mathematical Logic Quarterly | en_US |
dc.title | Intuitionistic propositional probability logic | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/malq.202100052 | - |
dc.identifier.scopus | 2-s2.0-85136841639 | - |
dc.contributor.affiliation | Mathematics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.description.rank | M23 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-9771-1196 | - |
crisitem.author.orcid | 0000-0003-2508-6480 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.