DC FieldValueLanguage
dc.contributor.authorIlić Stepić, Angelinaen_US
dc.contributor.authorKnežević, Matejaen_US
dc.contributor.authorOgnjanović, Zoranen_US
dc.date.accessioned2022-09-12T14:17:42Z-
dc.date.available2022-09-12T14:17:42Z-
dc.date.issued2022-08-29-
dc.identifier.issn0942-5616-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4832-
dc.description.abstractWe give a sound and complete axiomatization of a probabilistic extension of intuitionistic logic. Reasoning with probability operators is also intuitionistic (in contradistinction to other works on this topic), i.e., measure functions used for modeling probability operators are partial functions. Finally, we present a decision procedure for our logic, which is a combination of linear programming and an intuitionistic tableaux method.en_US
dc.publisherWileyen_US
dc.relation.ispartofMathematical Logic Quarterlyen_US
dc.titleIntuitionistic propositional probability logicen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/malq.202100052-
dc.identifier.scopus2-s2.0-85136841639-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.description.rankM23-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-9771-1196-
crisitem.author.orcid0000-0003-2508-6480-
Show simple item record

Page view(s)

67
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.