DC FieldValueLanguage
dc.contributor.authorDizdarević, Manuela Muzikaen_US
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2022-07-06T11:33:25Z-
dc.date.available2022-07-06T11:33:25Z-
dc.date.issued2022-
dc.identifier.issn0350-1302-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4809-
dc.description.abstractWe study Hamiltonian surfaces in the d-dimensional cube Id as intermediate objects useful for comparative analysis of Venn diagrams and Gray cycles. In particular we emphasize the importance of 0-Hamiltonian spheres and the “sphericity” of Gray codes in the context of reducible Venn diagrams. For illustration we show that precisely two, out of the nine known types of 4-bit Gray cycles, are not spherical. The unique, balanced Gray cycle is spherical, which in turn leads to a new construction of a reducible Venn diagram with 5 ellipses (originally constructed by P. Hamburger and R. E. Pippert).en_US
dc.publisherMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.subjectGray cycles | Hamiltonian surfaces | Venn diagramsen_US
dc.titleHamiltonian surfaces in the 4-cube, 4-bit Gray codes and Venn diagramsen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM2225017M-
dc.identifier.scopus2-s2.0-85131425787-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage17-
dc.relation.lastpage40-
dc.relation.issue125-
dc.relation.volume111-
dc.description.rankM24-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

Page view(s)

26
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.