DC FieldValueLanguage
dc.contributor.authorEkholm, Tobiasen_US
dc.contributor.authorGruen, Angusen_US
dc.contributor.authorGukov, Sergeien_US
dc.contributor.authorKucharski, Piotren_US
dc.contributor.authorPark, Sunghyuken_US
dc.contributor.authorStošić, Markoen_US
dc.contributor.authorSułkowski, Piotren_US
dc.date.accessioned2022-04-27T11:38:12Z-
dc.date.available2022-04-27T11:38:12Z-
dc.date.issued2022-07-01-
dc.identifier.issn0393-0440-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4792-
dc.description.abstractWe generalize the FK invariant, i.e. Zˆ for the complement of a knot K in the 3-sphere, the knots-quivers correspondence, and A-polynomials of knots, and find several interconnections between them. We associate an FK invariant to any branch of the A-polynomial of K and we work out explicit expressions for several simple knots. We show that these FK invariants can be written in the form of a quiver generating series, in analogy with the knots-quivers correspondence. We discuss various methods to obtain such quiver representations, among others using R-matrices. We generalize the quantum a-deformed A-polynomial to an ideal that contains the recursion relation in the group rank, i.e. in the parameter a, and describe its classical limit in terms of the Coulomb branch of a 3d-5d theory. We also provide t-deformed versions. Furthermore, we study how the quiver formulation for closed 3-manifolds obtained by surgery leads to the superpotential of 3d N=2 theory T[M3] and to the data of the associated modular tensor category MTC[M3].en_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Geometry and Physicsen_US
dc.subjectA polynomial | Open curve counts | Quantum invariants; High Energy Physics - Theory; High Energy Physics - Theory; Mathematics - Geometric Topology; Mathematics - Quantum Algebra; Mathematics - Symplectic Geometryen_US
dc.titleBranches, quivers, and ideals for knot complementsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.geomphys.2022.104520-
dc.identifier.scopus2-s2.0-85127914408-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage104520-
dc.relation.volume177-
dc.description.rank~M22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 23, 2024

Page view(s)

22
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.