DC FieldValueLanguage
dc.contributor.authorDanas Milivojević, Milicaen_US
dc.contributor.authorKratica, Jozefen_US
dc.contributor.authorSavić, Aleksandaren_US
dc.contributor.authorMaksimović, Zoran Lj.en_US
dc.date.accessioned2022-04-27T09:58:53Z-
dc.date.available2022-04-27T09:58:53Z-
dc.date.issued2021-01-01-
dc.identifier.issn0354-5180-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4788-
dc.description.abstractA vertex w ∈ V resolves two elements x, y ∈ V ∪ E if d(w, x) ≠ d(w, y). The mixed resolving set is a set of vertices S, S ⊆ V if any two elements of E ∪ V are resolved by some element of S. The minimum cardinality of a mixed resolving set is called the mixed metric dimension of a graph G. This paper introduces three new general lower bounds for the mixed metric dimension of a graph. The exact values of mixed metric dimension for torus graph are determined using one of these lower bounds. Finally, some illustrative examples of these new lower bounds and those known in the literature are presented on a set of some well-known graphs.en_US
dc.publisherUniversity of Nišen_US
dc.relationMathematical Modelas and Optimization Methods on Large-Scale Systemsen_US
dc.relation.ispartofFilomaten_US
dc.subjectGeneral lower bounds | mixed metric dimension | Mixed metric generator | Mixed resolving set | Torus graphen_US
dc.titleSome New General Lower Bounds for Mixed Metric Dimension of Graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL2113275M-
dc.identifier.scopus2-s2.0-85126277981-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.grantno174010en_US
dc.relation.firstpage4275-
dc.relation.lastpage4285-
dc.relation.issue13-
dc.relation.volume35-
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-9752-0971-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174010e.php-
crisitem.project.fundingProgramDirectorate for Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Engineering/1740103-
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 19, 2024

Page view(s)

23
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.