DC FieldValueLanguage
dc.contributor.authorDinčić, Nebojšaen_US
dc.contributor.authorĐorđević, Bogdanen_US
dc.date.accessioned2022-04-26T11:13:08Z-
dc.date.available2022-04-26T11:13:08Z-
dc.date.issued2022-04-01-
dc.identifier.issn1578-7303-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4780-
dc.description.abstractIn this paper we analyze isolated and connected points of the solution set to the Yang–Baxter-like matrix equation AXA= XAX. In particular, if A is a regular matrix, we prove that the trivial solution X= 0 is always isolated in the solution set, while the trivial solution X= A is isolated under some natural conditions, and an example shows that these conditions cannot be omitted. Conversely, we demonstrate that the two trivial solutions can be path-connected in the solution set when A is singular. Furhter, we prove that every nontrivial non-commuting solution is always contained in some path-connected subset of the solution set, regardless of whether A is regular or singular. Additionally, we develop new methods for obtaining infinitely many new nontrivial non-commuting solutions (for both regular and singular A). Explicit examples are provided after almost every theoretical result.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicasen_US
dc.subjectGeneralized inverses | Nonlinear matrix equations | Sylvester equation | Yang–Baxter-like matrix equationen_US
dc.titleOn the intrinsic structure of the solution set to the Yang–Baxter-like matrix equationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s13398-022-01214-8-
dc.identifier.scopus2-s2.0-85124038306-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage73-
dc.relation.issue2-
dc.relation.volume116-
dc.description.rank~M21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-6751-6867-
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 23, 2024

Page view(s)

39
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.