DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren_US
dc.contributor.authorKhoshnasib-Zeinabad, Faribaen_US
dc.date.accessioned2022-01-18T15:46:33Z-
dc.date.available2022-01-18T15:46:33Z-
dc.date.issued2022-
dc.identifier.issn0166-8641-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4764-
dc.description.abstractOur aim is to study topology of the Kirchhoff case of rigid body motion in an ideal incompressible fluid. We introduce the reduced potential for general Hamiltonian systems on e(3) with mixed quadratic terms. In application to the Kirchhoff case, we describe the Reeb graphs of the reduced potential. We provide a complete topological description of the three-dimensional isoenergy manifolds for that system, based on a combinatorial study of the Reeb graphs. Studying its momentum map, we describe the points of ranks zero and one. The Poincaré model of a rigid body with an ellipsoidal cavity filled with an ideal incompressible liquid has a Hamiltonian of the same form as the Kirchhoff Hamiltonian, with the underlying Poisson algebra being so(4). A similar analysis of bifurcations of the momentum map is presented in the Poincaré case as well.en_US
dc.publisherElsevieren_US
dc.relation.ispartofTopology and its Applicationsen_US
dc.subjectIso-energy manifolds | Kirchhoff case of Kirchhoff equations | Momentum map | Poincaré model of rigid body dynamics | Reeb graphsen_US
dc.titleTopology of the isoenergy manifolds of the Kirchhoff rigid body case on e(3)en_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.topol.2021.107955-
dc.identifier.scopus2-s2.0-85122247987-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage107955-
dc.description.rank~M23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-0295-4743-
Show simple item record

Page view(s)

18
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.