DC FieldValueLanguage
dc.contributor.authorJovanović, Jelenaen_US
dc.contributor.authorŠešelja, Branimiren_US
dc.contributor.authorTepavčević, Andrejaen_US
dc.date.accessioned2021-12-07T12:28:59Z-
dc.date.available2021-12-07T12:28:59Z-
dc.date.issued2021-11-29-
dc.identifier.issn0002-5240-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4744-
dc.description.abstractBy several postulates we introduce a new class of algebraic lattices, in which a main role is played by so called normal elements. A model of these lattices are weak-congruence lattices of groups, so that normal elements correspond to normal subgroups of subgroups. We prove that in this framework many basic structural properties of groups turn out to be lattice-theoretic. Consequently, we give necessary and sufficient conditions under which a group is Hamiltonian, Dedekind, abelian, solvable, supersolvable, metabelian, finite nilpotent. These conditions are given as lattice-theoretic properties of a lattice with normal elements.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofAlgebra Universalisen_US
dc.subjectClasses of groups | Lattice of subgroups | Lattice of weak congruences | Special elements in latticesen_US
dc.titleLattices with normal elementsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00012-021-00759-w-
dc.identifier.scopus2-s2.0-85120167920-
dc.contributor.affiliationComputer Scienceen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2-
dc.relation.volume83-
dc.description.rank~M22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-5716-604X-
Show simple item record

SCOPUSTM   
Citations

3
checked on Dec 20, 2024

Page view(s)

19
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.