DC FieldValueLanguage
dc.contributor.authorZekić, Mladenen_US
dc.date.accessioned2021-11-08T13:19:17Z-
dc.date.available2021-11-08T13:19:17Z-
dc.date.issued2021-
dc.identifier.issn0350-1302-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4676-
dc.description.abstractIn 2016, Garner and Schäppi gave a criterion for existence of finite biproducts in a specific class of monoidal categories. We provide an elementary proof of (a slight generalization of) their result. Also, we explain how to prove, by using the same technique, an analogous result including infinite biproducts.en_US
dc.publisherMathematical Institute of the SASAen_US
dc.relationRepresentations of logical structures and formal languages and their application in computingen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.subjectcoproduct | dual object | infinite biproducts | product | zero objecten_US
dc.titleBiproducts in monoidal categoriesen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM2123001Z-
dc.identifier.scopus2-s2.0-85117394700-
dc.identifier.urlhttp://elib.mi.sanu.ac.rs/files/journals/publ/130/publn130p1-9.pdf-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.grantno174026en_US
dc.relation.firstpage1-
dc.relation.lastpage9-
dc.relation.issue124-
dc.relation.volume110-
dc.description.rankM24-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174026e.php-
crisitem.project.fundingProgramDirectorate for Social, Behavioral & Economic Sciences-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Social, Behavioral & Economic Sciences/1740267-
crisitem.author.orcid0000-0001-8285-746X-
Show simple item record

Page view(s)

22
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.