DC FieldValueLanguage
dc.contributor.authorStević, Stevoen_US
dc.date.accessioned2021-10-04T09:16:02Z-
dc.date.available2021-10-04T09:16:02Z-
dc.date.issued2021-09-01-
dc.identifier.issn01704214-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4667-
dc.description.abstractWe investigate the following multilinear integral operator (Formula presented.) where (Formula presented.) and (Formula presented.) is a continuous kernel function satisfying the condition (Formula presented.) for some functions (Formula presented.), which are continuous, increasing, (Formula presented.), and a function (Formula presented.), from a product of weighted-type spaces to weighted-type spaces of real functions. We calculate the norm of the operator, extending and complementing some results in the literature. We also give an explanation for a relation between integrals of an Lp integrable function and its radialization on (Formula presented.).en_US
dc.publisherWileyen_US
dc.relation.ispartofMathematical Methods in the Applied Sciencesen_US
dc.subjectintegral operator | multilinear operator | operator norm | radialization of a function | weighted-type spaceen_US
dc.titleNorm of a multilinear integral operator from product of weighted-type spaces to weighted-type spaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/mma.7794-
dc.identifier.scopus2-s2.0-85115683014-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.description.rank~M21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 25, 2024

Page view(s)

29
checked on Nov 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.