DC FieldValueLanguage
dc.contributor.authorAnđelić, Milicaen_US
dc.contributor.authorCardoso, Domingosen_US
dc.contributor.authorSimić, Slobodanen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2021-09-21T08:33:53Z-
dc.date.available2021-09-21T08:33:53Z-
dc.date.issued2021-12-01-
dc.identifier.issn0012-365X-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4657-
dc.description.abstractA vertex v∈V(G) is called λ-main if it belongs to a star set X⊂V(G) of the eigenvalue λ of a graph G and this eigenvalue is main for the graph obtained from G by deleting all the vertices in X∖{v}; otherwise, v is λ-non-main. Some results concerning main and non-main vertices of an eigenvalue are deduced. For a main eigenvalue λ of a graph G, we introduce the minimum and maximum number of λ-main vertices in some λ-star set of G as new graph invariant parameters. The determination of these parameters is formulated as a combinatorial optimization problem based on a simplex-like approach. Using these and some related parameters we develop new spectral tools that can be used in the research of the isomorphism problem. Examples of graphs for which the maximum number of λ-main vertices coincides with the cardinality of a λ-star set are provided.en_US
dc.publisherElsevieren_US
dc.relation.ispartofDiscrete Mathematicsen_US
dc.subjectIsomorphism problem | Main eigenvalue | Main vertex | Star seten_US
dc.titleThe main vertices of a star set and related graph parametersen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2021.112593-
dc.identifier.scopus2-s2.0-85114471927-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage112593-
dc.relation.issue12-
dc.relation.volume344-
dc.description.rank~M22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
Show simple item record

Page view(s)

29
checked on Jan 22, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.