DC FieldValueLanguage
dc.contributor.authorĐorđević, Bogdanen_US
dc.date.accessioned2021-09-20T10:41:02Z-
dc.date.available2021-09-20T10:41:02Z-
dc.date.issued2021-12-01-
dc.identifier.issn1664-2368-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4655-
dc.description.abstractLet A be a closed operator on a separable Hilbert space H. In this paper we obtain sufficient conditions for the existence of a solution to the Lyapunov operator equation A∗X+ X∗A= I, under the assumption that it is singular (without a unique solution). Specially, if A is a self-adjoint operator, we derive sufficient conditions for the solution X to be symmetric. We also show that these results hold in the bounded-operator setting and in C∗- algebras. By doing so, we generalize some known results regarding solvability conditions for algebraic equations in C∗- algebras. We apply our results to study some functional problems in abstract analysis.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofAnalysis and Mathematical Physicsen_US
dc.subjectAbstract Cauchy problems | Equations in C - algebras ∗ | Fréchet derivative | Lyapunov operator equationsen_US
dc.titleSingular Lyapunov operator equations: applications to C∗- algebras, Fréchet derivatives and abstract Cauchy problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s13324-021-00596-z-
dc.identifier.scopus2-s2.0-85114421903-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage160-
dc.relation.issue4-
dc.relation.volume11-
dc.description.rank~M21a-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-6751-6867-
Show simple item record

Page view(s)

31
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.