DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jevtić, Filip | en_US |
dc.contributor.author | Živaljević, Rade | en_US |
dc.date.accessioned | 2021-08-24T09:22:55Z | - |
dc.date.available | 2021-08-24T09:22:55Z | - |
dc.date.issued | 2021-06-01 | - |
dc.identifier.issn | 1230-3429 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4646 | - |
dc.description.abstract | Motivated by classical Euler’s Tonnetz, we introduce and study the combinatorics and topology of more general simplicial complexes Tonnn k (L) of Tonnetz type. Out main result is that for a sufficiently generic choice of parameters the generalized Tonnetz Tonnn,k (L) is a triangulation of a (k-1)-dimensional torus Tk-1. In the proof we construct and use the properties of a discrete Abel-Jacobi map, which takes values in the torus Tk-1=ℝk-1/Λ where Λ=A*k-1 is the permutohedral lattice. | en_US |
dc.publisher | Juliusz Schauder Center for Nonlinear Analysis | en_US |
dc.relation.ispartof | Topological Methods in Nonlinear Analysis | en_US |
dc.subject | Discrete Abel-Jacobi map | Generalized Tonnetz | Permutohedral lattice | Polyhedral combinatorics | Simplicial complexes | Triangulated manifolds | en_US |
dc.title | Generalized tonnetz and discrete abel-jacobi map | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.12775/TMNA.2020.049 | - |
dc.identifier.scopus | 2-s2.0-85112512797 | - |
dc.contributor.affiliation | Mechanics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 547 | - |
dc.relation.lastpage | 567 | - |
dc.relation.issue | 2 | - |
dc.relation.volume | 57 | - |
dc.description.rank | ~M22 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0009-0009-9594-9895 | - |
crisitem.author.orcid | 0000-0001-9801-8839 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.