DC FieldValueLanguage
dc.contributor.authorJočić, Draganen_US
dc.contributor.authorŠtajner-Papuga, Ivanaen_US
dc.date.accessioned2021-08-24T08:56:05Z-
dc.date.available2021-08-24T08:56:05Z-
dc.date.issued2021-01-01-
dc.identifier.isbn978-3-030-72711-6-
dc.identifier.issn1860-949X-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4641-
dc.description.abstractAggregation operators are an important mathematical tool in a number of areas and disciplines of both pure and applied mathematics. For both theoretical and practical reasons, aggregation operators with an annihilator and aggregation operators with a neutral element are of special interest for researchers. The issue of distributivity of aggregation operators is crucial for many different areas such as decision making theory and integration theory. This chapter covers the characterization of all pairs (F, G) of aggregation operators that satisfy distributivity law, on both whole and restricted domains, where F is a T-uninorm in Umax or a nullnorm with the annihilator a∈ ] 0, 1 [, and G is a t-conorm or a uninorm from the classes Umin or Umax.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofArtificial Intelligence: Theory and Applicationsen_US
dc.relation.ispartofseriesStudies in Computational Intelligenceen_US
dc.subjectAggregation operator | Conditional distributivity | Distributivity equation | Nullnorm | Triangular conorm | Triangular norm | Uninormen_US
dc.titleAggregation Operators and Distributivity Equationsen_US
dc.typeBook Chapteren_US
dc.identifier.doi10.1007/978-3-030-72711-6_7-
dc.identifier.scopus2-s2.0-85112016109-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage121-
dc.relation.lastpage135-
dc.description.rankM14-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeBook Chapter-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-4574-5228-
Show simple item record

Page view(s)

21
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.