DC FieldValueLanguage
dc.contributor.authorDautović, Šejlaen_US
dc.contributor.authorDoder, Draganen_US
dc.contributor.authorOgnjanović, Zoranen_US
dc.date.accessioned2021-08-17T08:55:55Z-
dc.date.available2021-08-17T08:55:55Z-
dc.date.issued2021-05-31-
dc.identifier.issn0955-792X-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4631-
dc.description.abstractIn this paper, we present a first-order and a propositional logic for reasoning about degrees of confirmation. We define the appropriate formal languages and describe the corresponding classes of models. We provide infinitary axiomatizations for both logics and we prove that the axiomatizations are sound and strongly complete. We also show that our propositional logic is decidable. For some restrictions of the logics, we provide finitary axiomatic systems.en_US
dc.publisherOxford Academic Pressen_US
dc.relation.ispartofJournal of Logic and Computationen_US
dc.titleLogics for reasoning about degrees of confirmationen_US
dc.typeArticleen_US
dc.identifier.doi10.1093/logcom/exab033-
dc.identifier.urlhttps://academic.oup.com/logcom/article-pdf/31/8/2189/41808968/exab033.pdf-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpageexab033-
dc.relation.firstpage2189-
dc.relation.lastpage2217-
dc.relation.issue8-
dc.relation.volume31-
dc.description.rank~M21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-2108-3314-
crisitem.author.orcid0000-0003-2508-6480-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 23, 2024

Page view(s)

24
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.