DC FieldValueLanguage
dc.contributor.authorJovanović, Jelenaen_US
dc.contributor.authorŠešelja, Branimiren_US
dc.contributor.authorTepavčević, Andrejaen_US
dc.date.accessioned2021-07-14T10:46:23Z-
dc.date.available2021-07-14T10:46:23Z-
dc.date.issued2021-08-01-
dc.identifier.issn0002-5240-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4615-
dc.description.abstractThe paper deals with subnormal and composition subgroups in the framework of weak congruence lattices of groups. Weak congruences of the composition subgroups of a group form a sublattice of the lattice of all weak congruences. We characterize normality and subnormality in purely lattice-theoretic terms. For a finite group G we prove: all subgroups of G are subnormal (i.e., G is nilpotent) if and only if the weak congruence lattice of G is lower semimodular.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofAlgebra Universalisen_US
dc.subjectFinite nilpotent groups | Semi-modularity | Subnormal subgroups | Weak congruence latticeen_US
dc.titleLattice characterization of finite nilpotent groupsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00012-021-00716-7-
dc.identifier.scopus2-s2.0-85106859717-
dc.contributor.affiliationComputer Scienceen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage40-
dc.relation.issue3-
dc.relation.volume82-
dc.description.rank~M22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-5716-604X-
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 20, 2024

Page view(s)

20
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.