DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jovanović, Jelena | en_US |
dc.contributor.author | Šešelja, Branimir | en_US |
dc.contributor.author | Tepavčević, Andreja | en_US |
dc.date.accessioned | 2021-07-14T10:46:23Z | - |
dc.date.available | 2021-07-14T10:46:23Z | - |
dc.date.issued | 2021-08-01 | - |
dc.identifier.issn | 0002-5240 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4615 | - |
dc.description.abstract | The paper deals with subnormal and composition subgroups in the framework of weak congruence lattices of groups. Weak congruences of the composition subgroups of a group form a sublattice of the lattice of all weak congruences. We characterize normality and subnormality in purely lattice-theoretic terms. For a finite group G we prove: all subgroups of G are subnormal (i.e., G is nilpotent) if and only if the weak congruence lattice of G is lower semimodular. | en_US |
dc.publisher | Springer Link | en_US |
dc.relation.ispartof | Algebra Universalis | en_US |
dc.subject | Finite nilpotent groups | Semi-modularity | Subnormal subgroups | Weak congruence lattice | en_US |
dc.title | Lattice characterization of finite nilpotent groups | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00012-021-00716-7 | - |
dc.identifier.scopus | 2-s2.0-85106859717 | - |
dc.contributor.affiliation | Computer Science | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 40 | - |
dc.relation.issue | 3 | - |
dc.relation.volume | 82 | - |
dc.description.rank | ~M22 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-5716-604X | - |
SCOPUSTM
Citations
4
checked on Dec 20, 2024
Page view(s)
20
checked on Dec 22, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.