DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren_US
dc.contributor.authorShramchenko, Vasilisaen_US
dc.date.accessioned2021-07-14T10:39:50Z-
dc.date.available2021-07-14T10:39:50Z-
dc.date.issued2021-05-25-
dc.identifier.issn0377-9017-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4614-
dc.description.abstractThe aim of this paper is to introduce new type of deformations of domains in the extended complex plane with a marked point and associated Green functions, the so-called iso-harmonic deformations in the first nontrivial case of doubly connected domains and to study their isomonodromic properties. We start with the Zolotarev polynomials, which are a particular case of generalized Chebyshev polynomials, namely minimal polynomials on two intervals. We introduce a deformation of elliptic curves which support Zolotarev polynomials and relate it to the Painlevé VI equations. Then, we transport these considerations into the realm of potential theory of annular domains. We deform these domains and the poles of the associated Green functions in a specific new way, by keeping invariant the corresponding harmonic measure of the boundary circles. We deduce that the critical points of the Green functions under such deformations solve a Painlevé VI equation.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofLetters in Mathematical Physicsen_US
dc.subjectAbelian differentials | Annular domains | Elliptic curves | Green functions | Harmonic measures | Okamoto transformations | Painlevé VI equations | Zolotarev polynomialsen_US
dc.titleDeformations of the Zolotarev polynomials and Painlevé VI equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11005-021-01415-z-
dc.identifier.scopus2-s2.0-85106906648-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage75-
dc.relation.issue3-
dc.relation.volume111-
dc.description.rank~M22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-0295-4743-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 24, 2024

Page view(s)

24
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.