DC FieldValueLanguage
dc.contributor.authorStevanović, Draganen_US
dc.date.accessioned2021-07-14T10:13:26Z-
dc.date.available2021-07-14T10:13:26Z-
dc.date.issued2022-
dc.identifier.issn0167-8094-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4611-
dc.description.abstractThe k-th spectral moment Mk(G) of the adjacency matrix of a graph G represents the number of closed walks of length k in G. We study here the partial order ≼ of graphs, defined by G ≼ H if Mk(G) ≤ Mk(H) for all k ≥ 0, and are interested in the question when is ≼ a linear order within a specified set of graphs? Our main result is that ≼ is a linear order on each set of starlike trees with constant number of vertices. Recall that a connected graph G is a starlike tree if it has a vertex u such that the components of G − u are paths, called the branches of G. It turns out that the ≼ ordering of starlike trees with constant number of vertices coincides with the shortlex order of sorted sequence of their branch lengths.en_US
dc.relation.ispartofOrderen_US
dc.subjectClosed walks | Linear order | Spectral moments | Starlike treesen_US
dc.titleOrdering Starlike Trees by the Totality of Their Spectral Momentsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11083-021-09566-3-
dc.identifier.scopus2-s2.0-85105481044-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage77-
dc.relation.lastpage94-
dc.relation.volume39-
dc.description.rank~M23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2908-305X-

#### SCOPUSTM Citations

1
checked on Jul 12, 2024

#### Page view(s)

51
checked on May 9, 2024