DC FieldValueLanguage
dc.contributor.authorHelfmann, Luizeen_US
dc.contributor.authorConrad Đurđevac, Natašaen_US
dc.contributor.authorĐurđevac, Anaen_US
dc.contributor.authorWinkelmann, Stefanieen_US
dc.contributor.authorSchütte, Christofen_US
dc.date.accessioned2021-05-19T09:39:30Z-
dc.date.available2021-05-19T09:39:30Z-
dc.date.issued2021-01-01-
dc.identifier.issn1559-3940-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4572-
dc.description.abstractMany real-world processes can naturally be modeled as systems of interacting agents. However, the long-term simulation of such agent-based models is often intractable when the system becomes too large. In this paper, starting from a stochastic spatiotemporal agent-based model (ABM), we present a reduced model in terms of stochastic PDEs that describes the evolution of agent number densities for large populations while retaining the inherent model stochasticity. We discuss the algorithmic details of both approaches; regarding the SPDE model, we apply finite element discretization in space, which not only ensures efficient simulation but also serves as a regularization of the SPDE. Illustrative examples for the spreading of an innovation among agents are given and used for comparing ABM and SPDE models.en_US
dc.publisherMathematical Science Publishersen_US
dc.relation.ispartofCommunications in Applied Mathematics and Computational Scienceen_US
dc.subjectagent-based modeling | Dean-Kawasaki model | finite element method | model reduction | SPDEsen_US
dc.titleFROM INTERACTING AGENTS TO DENSITY-BASED MODELING WITH STOCHASTIC PDESen_US
dc.typeArticleen_US
dc.identifier.doi10.2140/CAMCOS.2021.16.1-
dc.identifier.scopus2-s2.0-85100616509-
dc.relation.firstpage1-
dc.relation.lastpage32-
dc.relation.issue1-
dc.relation.volume16-
dc.description.rank~M21a-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
Show simple item record

SCOPUSTM   
Citations

16
checked on Apr 10, 2025

Page view(s)

21
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.