DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gowers, W. T. | en_US |
dc.contributor.author | Milićević, Luka | en_US |
dc.date.accessioned | 2021-05-19T09:00:29Z | - |
dc.date.available | 2021-05-19T09:00:29Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 0013-0915 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4570 | - |
dc.description.abstract | Let be finite-dimensional vector spaces over a prime field. A multilinear variety of codimension at most is a subset of defined as the zero set of forms, each of which is multilinear on some subset of the coordinates. A map defined on a multilinear variety is multilinear if for each coordinate and all choices of, the restriction map is linear where defined. In this note, we show that a multilinear map defined on a multilinear variety of codimension at most coincides on a multilinear variety of codimension with a multilinear map defined on the whole of. Additionally, in the case of general finite fields, we deduce similar (but slightly weaker) results. | en_US |
dc.publisher | Cambridge University Press | en_US |
dc.relation.ispartof | Proceedings of the Edinburgh Mathematical Society | en_US |
dc.subject | extensions of maps | multilinear maps | multilinear varieties | en_US |
dc.title | A note on extensions of multilinear maps defined on multilinear varieties | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1017/S0013091521000055 | - |
dc.identifier.scopus | 2-s2.0-85105120036 | - |
dc.contributor.affiliation | Mathematics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 148 | - |
dc.relation.lastpage | 173 | - |
dc.relation.issue | 2 | - |
dc.relation.volume | 64 | - |
dc.description.rank | M22 | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
crisitem.author.orcid | 0000-0002-1427-7241 | - |
SCOPUSTM
Citations
1
checked on Nov 19, 2024
Page view(s)
26
checked on Nov 19, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.