DC FieldValueLanguage
dc.contributor.authorGowers, W. T.en_US
dc.contributor.authorMilićević, Lukaen_US
dc.date.accessioned2021-05-19T09:00:29Z-
dc.date.available2021-05-19T09:00:29Z-
dc.date.issued2021-
dc.identifier.issn0013-0915-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4570-
dc.description.abstractLet be finite-dimensional vector spaces over a prime field. A multilinear variety of codimension at most is a subset of defined as the zero set of forms, each of which is multilinear on some subset of the coordinates. A map defined on a multilinear variety is multilinear if for each coordinate and all choices of, the restriction map is linear where defined. In this note, we show that a multilinear map defined on a multilinear variety of codimension at most coincides on a multilinear variety of codimension with a multilinear map defined on the whole of. Additionally, in the case of general finite fields, we deduce similar (but slightly weaker) results.en_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofProceedings of the Edinburgh Mathematical Societyen_US
dc.subjectextensions of maps | multilinear maps | multilinear varietiesen_US
dc.titleA note on extensions of multilinear maps defined on multilinear varietiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/S0013091521000055-
dc.identifier.scopus2-s2.0-85105120036-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage148-
dc.relation.lastpage173-
dc.relation.issue2-
dc.relation.volume64-
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-1427-7241-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 19, 2024

Page view(s)

26
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.