DC FieldValueLanguage
dc.contributor.authorDautović, Šejlaen_US
dc.contributor.authorZekić, Mladenen_US
dc.date.accessioned2021-05-19T08:15:08Z-
dc.date.available2021-05-19T08:15:08Z-
dc.date.issued2021-05-01-
dc.identifier.issn1735-0654-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4564-
dc.description.abstractWe consider a category C enriched over the segment [0, 1] whose hom-objects are real numbers from [0, 1]. For a suitably defined function ˆv assigning to each formula φ some object of C, the hom-object C(ˆv(φ), ˆv(ψ)) represents the degree of derivability of ψ from φ. We reformulate completeness result for intuitionistic propositional logic, as well as Hájek’s completeness results concerning the product, Gödel and łLukasiewicz fuzzy logic in the context of enriched category theory.en_US
dc.publisherUniversity of Sistan and Baluchestanen_US
dc.relation.ispartofIranian Journal of Fuzzy Systemsen_US
dc.subjectBicartesian closed V-enriched category | Gödel fuzzy logic | Product fuzzy logic | Self-enriched category | T-norm | łLukasiewicz fuzzy logicen_US
dc.titleFuzzy logic and enriched categoriesen_US
dc.typeArticleen_US
dc.identifier.doi10.22111/ijfs.2021.6077-
dc.identifier.scopus2-s2.0-85104679485-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1-
dc.relation.lastpage11-
dc.relation.issue3-
dc.relation.volume18-
dc.description.rank~M21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-2108-3314-
crisitem.author.orcid0000-0001-8285-746X-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 24, 2024

Page view(s)

23
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.