DC FieldValueLanguage
dc.contributor.authorFedorov, Yurien_US
dc.contributor.authorJovanović, Božidaren_US
dc.date.accessioned2021-05-19T07:41:26Z-
dc.date.available2021-05-19T07:41:26Z-
dc.date.issued2021-06-01-
dc.identifier.issn1078-0947-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4560-
dc.description.abstractWe study geometric and algebraic geometric properties of the continuous and discrete Neumann systems on cotangent bundles of Stiefel varieties Vn,r. The systems are integrable in the non-commutative sense, and by applying a 2r × 2r-Lax representation, we show that generic complex invariant manifolds are open subsets of affine Prym varieties on which the complex flow is linear. The characteristics of the varieties and the direction of the flow are calculated explicitly. Next, we construct a family of multi-valued integrable discretizations of the Neumann systems and describe them as translations on the Prym varieties, which are written explicitly in terms of divisors of points on the spectral curve.en_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.relation.ispartofDiscrete and Continuous Dynamical Systems- Series Aen_US
dc.subjectIntegrable systems | Invariant tori | Multi-valued mappings | Prym varieties | Spectral curvesen_US
dc.titleContinuous and discrete neumann systems on stiefel varieties as matrix generalizations of the jacobi-mumford systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.3934/dcds.2020375-
dc.identifier.scopus2-s2.0-85103792547-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2559-
dc.relation.lastpage2599-
dc.relation.issue6-
dc.relation.volume41-
dc.description.rank~M21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.