DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stević, Stevo | en_US |
dc.contributor.author | Jiang, Zhijie | en_US |
dc.date.accessioned | 2021-05-19T07:28:28Z | - |
dc.date.available | 2021-05-19T07:28:28Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 0170-4214 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4558 | - |
dc.description.abstract | Let (Formula presented.) be the set of all holomorphic functions on the open unit ball (Formula presented.) in (Formula presented.), φ a holomorphic self-map of (Formula presented.), (Formula presented.), and ℜ the mth iterated radial derivative operator on (Formula presented.). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operator (Formula presented.) from the weighted Bergman–Orlicz space to the weighted-type space. m | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | en_US |
dc.subject | Bergman–Orlicz space | holomorphic function | metrical boundedness | weighted iterated radial composition operator | weighted-type space | en_US |
dc.title | Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted-type spaces on the unit ball | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/mma.7298 | - |
dc.identifier.scopus | 2-s2.0-85103427074 | - |
dc.contributor.affiliation | Mathematics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.description.rank | ~M21 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
22
checked on Dec 26, 2024
Page view(s)
16
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.