DC FieldValueLanguage
dc.contributor.authorStević, Stevoen_US
dc.contributor.authorJiang, Zhijieen_US
dc.date.accessioned2021-05-19T07:28:28Z-
dc.date.available2021-05-19T07:28:28Z-
dc.date.issued2021-
dc.identifier.issn0170-4214-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4558-
dc.description.abstractLet (Formula presented.) be the set of all holomorphic functions on the open unit ball (Formula presented.) in (Formula presented.), φ a holomorphic self-map of (Formula presented.), (Formula presented.), and ℜ the mth iterated radial derivative operator on (Formula presented.). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operator (Formula presented.) from the weighted Bergman–Orlicz space to the weighted-type space. men_US
dc.publisherWileyen_US
dc.relation.ispartofMathematical Methods in the Applied Sciencesen_US
dc.subjectBergman–Orlicz space | holomorphic function | metrical boundedness | weighted iterated radial composition operator | weighted-type spaceen_US
dc.titleWeighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted-type spaces on the unit ballen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/mma.7298-
dc.identifier.scopus2-s2.0-85103427074-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.description.rank~M21-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

17
checked on Jun 15, 2024

Page view(s)

55
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.