DC FieldValueLanguage
dc.contributor.authorĐorđević, Bogdanen_US
dc.date.accessioned2021-05-19T07:23:06Z-
dc.date.available2021-05-19T07:23:06Z-
dc.date.issued2021-08-01-
dc.identifier.issn0024-3795-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4557-
dc.description.abstractWe prove that, by assuming the existence of at least one left upper semi-Fredholm operator, then under some natural conditions, the singular operator equation AX−XB=C is solvable if the appropriate matrix equation is solvable. This characterization is convenient because the matrix version of the problem has been closed in [14] and [17]. In addition, we obtain sufficient conditions for A, B and X such that the generalized derivation AX−XB is a compact operator. A connection is established with Fréchet derivatives and commutators of idempotents. Applications to Schur coupling and linear time-invariant systems are mentioned.en_US
dc.publisherElsevieren_US
dc.relationFunctional analysis, stochastic analysis and applicationsen_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectFredholm theory | Operator algebras | Sylvester equationsen_US
dc.titleSingular Sylvester equation in Banach spaces and its applications: Fredholm theory approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2021.03.035-
dc.identifier.scopus2-s2.0-85103553080-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.grantno174007en_US
dc.relation.firstpage189-
dc.relation.lastpage214-
dc.relation.volume622-
dc.description.rank~M21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.funderNIH-
crisitem.project.fundingProgramNATIONAL CANCER INSTITUTE-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NIH/NATIONAL CANCER INSTITUTE/1R43CA174007-01-
crisitem.author.orcid0000-0002-6751-6867-
Show simple item record

SCOPUSTM   
Citations

11
checked on Dec 20, 2024

Page view(s)

37
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.