DC FieldValueLanguage
dc.contributor.authorĐorđević, Bogdanen_US
dc.date.accessioned2021-05-19T07:23:06Z-
dc.date.available2021-05-19T07:23:06Z-
dc.date.issued2021-08-01-
dc.identifier.issn0024-3795-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4557-
dc.description.abstractWe prove that, by assuming the existence of at least one left upper semi-Fredholm operator, then under some natural conditions, the singular operator equation AX−XB=C is solvable if the appropriate matrix equation is solvable. This characterization is convenient because the matrix version of the problem has been closed in [14] and [17]. In addition, we obtain sufficient conditions for A, B and X such that the generalized derivation AX−XB is a compact operator. A connection is established with Fréchet derivatives and commutators of idempotents. Applications to Schur coupling and linear time-invariant systems are mentioned.en_US
dc.publisherElsevieren_US
dc.relationFunctional analysis, stochastic analysis and applicationsen_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectFredholm theory | Operator algebras | Sylvester equationsen_US
dc.titleSingular Sylvester equation in Banach spaces and its applications: Fredholm theory approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2021.03.035-
dc.identifier.scopus2-s2.0-85103553080-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.grantno174007en_US
dc.relation.firstpage189-
dc.relation.lastpage214-
dc.relation.volume622-
dc.description.rank~M21-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-6751-6867-
crisitem.project.funderNIH-
crisitem.project.fundingProgramNATIONAL CANCER INSTITUTE-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NIH/NATIONAL CANCER INSTITUTE/1R43CA174007-01-

#### SCOPUSTM Citations

9
checked on Jun 15, 2024

#### Page view(s)

59
checked on May 9, 2024