| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Al-Yakoob, Salem | en_US |
| dc.contributor.author | Stevanović, Dragan | en_US |
| dc.date.accessioned | 2021-05-17T09:44:04Z | - |
| dc.date.available | 2021-05-17T09:44:04Z | - |
| dc.date.issued | 2022 | - |
| dc.identifier.issn | 1598-5865 | - |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4551 | - |
| dc.description.abstract | Transmission of a vertex v of a connected graph G is the sum of distances from v to all other vertices in G. Graph G is transmission irregular (TI) if no two of its vertices have the same transmission, and G is interval transmission irregular (ITI) if it is TI and the vertex transmissions of G form a sequence of consecutive integers. Here we give a positive answer to the question of Dobrynin [Appl Math Comput 340 (2019), 1–4] of whether infinite families of ITI graphs exist. | en_US |
| dc.publisher | Springer Link | en_US |
| dc.relation.ispartof | Journal of Applied Mathematics and Computing | en_US |
| dc.subject | Transmission irregular graph | Vertex transmission | Wiener complexity | en_US |
| dc.title | On interval transmission irregular graphs | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1007/s12190-021-01513-0 | - |
| dc.identifier.scopus | 2-s2.0-85101854441 | - |
| dc.contributor.affiliation | Mathematics | en_US |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
| dc.relation.firstpage | 45 | - |
| dc.relation.lastpage | 68 | - |
| dc.relation.volume | 68 | - |
| dc.description.rank | ~M21а | - |
| item.openairetype | Article | - |
| item.fulltext | No Fulltext | - |
| item.grantfulltext | none | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.cerifentitytype | Publications | - |
| crisitem.author.orcid | 0000-0003-2908-305X | - |
SCOPUSTM
Citations
10
checked on Jan 10, 2026
Page view(s)
82
checked on Jan 10, 2026
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.