DC FieldValueLanguage
dc.contributor.authorJanev, Markoen_US
dc.contributor.authorVrcelj, Zoraen_US
dc.contributor.authorAtanacković, Teodoren_US
dc.date.accessioned2021-05-17T09:18:29Z-
dc.date.available2021-05-17T09:18:29Z-
dc.date.issued2021-06-
dc.identifier.issn0020-7462-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4547-
dc.description.abstractBy using a Pontryagin's principle, we study the optimal shape of a rotating nano rod and determine the optimal cross-section that is stable against buckling due to centrifugal forces. We generalize the results of the earlier studies focused on the constant cross-sectional area of nano rods. The problem of the optimal shape of a Bernoulli–Euler rotating rod is analyzed first. The optimal nano rod with fixed volume was found to have larger critical rotation speed than the optimally shaped Bernoulli–Euler rod with the same volume. Similarly, for fixed rotational speed, the optimally shaped nano rod was found to have smaller volume than the optimally shaped Bernoulli–Euler rod.en_US
dc.publisherElsevieren_US
dc.relation.ispartofInternational Journal of Non-Linear Mechanicsen_US
dc.subjectBuckling | Nano rod | Optimal shape | Optimization | Pontryagin's principle | Stability analysisen_US
dc.titleOptimal shape of the rotating nano roden_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ijnonlinmec.2021.103688-
dc.identifier.scopus2-s2.0-85101645676-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage103688-
dc.relation.volume132-
dc.description.rank~M22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-3246-4988-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 19, 2024

Page view(s)

17
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.