DC FieldValueLanguage
dc.contributor.authorAndrews, George E.en_US
dc.contributor.authorDragović, Vladimiren_US
dc.contributor.authorRadnović, Milenaen_US
dc.date.accessioned2021-05-17T09:13:24Z-
dc.date.available2021-05-17T09:13:24Z-
dc.date.issued2021-
dc.identifier.issn1382-4090-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4546-
dc.description.abstractWe study combinatorics of billiard partitions which arose recently in the description of periodic trajectories of ellipsoidal billiards in d-dimensional Euclidean and pseudo-Euclidean spaces. Such partitions uniquely codify the sets of caustics, up to their types, which generate periodic trajectories. The period of a periodic trajectory is the largest part while the winding numbers are the remaining summands of the corresponding partition. In order to take into account the types of caustics as well, we introduce weighted partitions and provide closed forms for the generating functions of these partitions.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofRamanujan Journalen_US
dc.subjectEuclidean billiard partitions | Generating functions | Irreducible partitions | Light-type partitions | Space-type partitions | Time-type partitions | Weighted Euclidean billiard partitionsen_US
dc.titleCombinatorics of periodic ellipsoidal billiardsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11139-020-00346-y-
dc.identifier.scopus2-s2.0-85100908430-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.description.rank~M21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-0295-4743-
Show simple item record

SCOPUSTM   
Citations

3
checked on Jul 14, 2024

Page view(s)

52
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.