DC FieldValueLanguage
dc.contributor.authorTričković, Slobodanen_US
dc.contributor.authorStanković, Miomiren_US
dc.date.accessioned2021-05-17T08:50:35Z-
dc.date.available2021-05-17T08:50:35Z-
dc.date.issued2020-01-01-
dc.identifier.issn1452-8630-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4543-
dc.description.abstractBy attaching a sequence (Formula presented) to the binomial transform, a new operator (Formula presented) is obtained. We use the same sequence to define a new transform (Formula presented) mapping derivatives to the powers of (Formula presented), and integrals to (Formula presented). The inverse transform (Formula presented) of (Formula presented) is introduced and its properties are studied. For α = (−1) , (Formula presented) reduces to the Borel transform. Applying (Formula presented) to Bessel’s differential operator (Formula presented), we obtain Bessel’s discrete operator (Formula presented). Its eigenvectors correspond to eigenfunctions of Bessel’s differential operator. n nen_US
dc.relation.ispartofApplicable Analysis and Discrete Mathematicsen_US
dc.subjectBessel’s operator | Binomial transform | forward difference operator | generalized function-to-sequence transformen_US
dc.titleON A GENERALIZED FUNCTION-TO-SEQUENCE TRANSFORMen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-85100372568-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage300-
dc.relation.lastpage316-
dc.relation.issue2-
dc.relation.volume14-
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-

#### Page view(s)

42
checked on May 9, 2024