DC FieldValueLanguage
dc.contributor.authorKratica, Jozefen_US
dc.contributor.authorMatić, Draganen_US
dc.contributor.authorFilipović, Vladimiren_US
dc.date.accessioned2021-01-04T08:48:27Z-
dc.date.available2021-01-04T08:48:27Z-
dc.date.issued2020-
dc.identifier.issn0041-6932-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4518-
dc.description.abstractWe consider the weakly convex and convex domination numbers for two classes of graphs: generalized Petersen graphs and flower snark graphs. For a given generalized Petersen graph GP(n,k), we prove that if k=1 and n≥4 then both the weakly convex domination number γwcon(GP(n,k)) and the convex domination number γcon(GP(n,k)) are equal to n. For k≥2 and n≥13, γwcon(GP(n,k))=γcon(GP(n,k))=2n, which is the order of GP(n,k). Special cases for smaller graphs are solved by the exact method. For a flower snark graph Jn, where n is odd and n≥5, we prove that γwcon(Jn)=2n and γcon(Jn)=4n.en_US
dc.publisherUnión Matemática Argentinaen_US
dc.relationMathematical Modelas and Optimization Methods on Large-Scale Systemsen_US
dc.relationGraph theory and mathematical programming with applications in chemistry and computer scienceen_US
dc.relation.ispartofRevista de la Unión Matemática Argentinaen_US
dc.titleWeakly convex and convex domination numbers for generalized Petersen and flower snark graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.33044/revuma.v61n2a16-
dc.identifier.scopus2-s2.0-85099635202-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.grantno174010en_US
dc.relation.grantno174033en_US
dc.relation.firstpage441-
dc.relation.lastpage455-
dc.relation.issue2-
dc.relation.volume61-
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174010e.php-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php-
crisitem.project.fundingProgramDirectorate for Engineering-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Engineering/1740103-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333-
crisitem.author.orcid0000-0002-9752-0971-
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 24, 2024

Page view(s)

25
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.