DC FieldValueLanguage
dc.contributor.authorBaralić, Đorđeen_US
dc.contributor.authorGrbić, Jelenaen_US
dc.contributor.authorLimochenko, Ivanen_US
dc.contributor.authorVučić, Aleksandaren_US
dc.date.accessioned2020-12-29T12:05:30Z-
dc.date.available2020-12-29T12:05:30Z-
dc.date.issued2020-
dc.identifier.issn0354-5180-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4514-
dc.description.abstractIn this paper we illustrate a tight interplay between homotopy theory and combinatorics within toric topology by explicitly calculating homotopy and combinatorial invariants of toric objects associated with the dodecahedron. In particular, we calculate the cohomology ring of the (complexand real) moment-angle manifolds over the dodecahedron, and of a certain quasitoric manifold and of a related small cover. We nish by studying Massey products in the cohomology ring of moment-angle manifolds over the dodecahedron and how the existence of nontrivial Massey products in uences the behaviour of the Poincare series of the corresponding Pontryagin algebraen_US
dc.publisherPrirodno matematički fakultet, Univerzitet u Nišuen_US
dc.relation.ispartofFilomaten_US
dc.titleToric Objects Associated with the Dodecahedronen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL2007329B-
dc.identifier.scopus2-s2.0-85099226891-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage2329-
dc.relation.lastpage2356-
dc.relation.issue7-
dc.relation.volume34-
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2836-7958-
crisitem.author.orcid0000-0002-2072-8475-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 24, 2024

Page view(s)

26
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.