Authors: | Dragović, Branko Rakić, Zoran |
Title: | Path integrals in noncommutative quantum mechanics | Journal: | Theoretical and Mathematical Physics | Volume: | 140 | Issue: | 3 | First page: | 1299 | Last page: | 1308 | Issue Date: | 1-Jan-2004 | Rank: | M23 | ISSN: | 0040-5779 | DOI: | 10.1023/B:TAMP.0000039834.84359.f8 | Abstract: | We consider an extension of the Feynman path integral to the quantum mechanics of noncommuting spatial coordinates and formulate the corresponding formalism for noncommutative classical dynamics related to quadratic Lagrangians (Hamiltonians). The basis of our approach is that a quantum mechanical system with a noncommutative configuration space can be regarded as another effective system with commuting spatial coordinates. Because the path integral for quadratic Lagrangians is exactly solvable and a general formula for the probability amplitude exists, we restrict our research to this class of Lagrangians. We find a general relation between quadratic Lagrangians in their commutative and noncommutative regimes and present the corresponding noncommutative path integral. This method is illustrated with two quantum mechanical systems in the noncommutative plane: a particle in a constant field and a harmonic oscillator. |
Keywords: | Feynman path integral | noncommutative quantum mechanics | systems with quadratic Lagrangians |
Show full item record
SCOPUSTM
Citations
20
checked on Dec 26, 2024
Page view(s)
19
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.