DC FieldValueLanguage
dc.contributor.authorDragović, Brankoen
dc.contributor.authorKhrennikov, Andreien
dc.contributor.authorMihajlović, Dušanen
dc.date.accessioned2020-12-11T13:04:48Z-
dc.date.available2020-12-11T13:04:48Z-
dc.date.issued2007-08-01en
dc.identifier.issn0034-4877en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4477-
dc.description.abstractUsing an adelic approach we simultaneously consider real and p-adic aspects of dynamical systems whose states are mapped by linear fractional transformations isomorphic to some subgroups of GL(2, ℚ), SL(2, ℚ) and SL(2, ℤ) groups. In particular, we investigate behaviour of these adelic systems when fixed points are rational. It is shown that any of these rational fixed points is p-adic indifferent for all but a finite set of primes. Thus only for finite number of p-adic cases a rational fixed point may be attractive or repelling. Basins of attraction, the Siegel disks and adelic trajectory are examined. It is also shown that real and p-adic norms of any nonzero rational fixed point are connected by adelic product formula.en
dc.publisherElsevier-
dc.relation.ispartofReports on Mathematical Physicsen
dc.subjectadelic dynamics | fixed points. | p-adic dynamicsen
dc.titleLinear fraction P-Adic and adelic dynamical systemsen
dc.typeArticleen
dc.identifier.doi10.1016/S0034-4877(07)80098-Xen
dc.identifier.scopus2-s2.0-35648954191en
dc.relation.firstpage55en
dc.relation.lastpage68en
dc.relation.issue1en
dc.relation.volume60en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-5818-0150-
Show simple item record

SCOPUSTM   
Citations

22
checked on Nov 25, 2024

Page view(s)

27
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.