DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dragovich, B. | en |
dc.date.accessioned | 2020-12-11T13:04:48Z | - |
dc.date.available | 2020-12-11T13:04:48Z | - |
dc.date.issued | 2008-12-01 | en |
dc.identifier.issn | 00405779 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4475 | - |
dc.description.abstract | We consider some nonlocal and nonpolynomial scalar field models originating from p-adic string theory. An infinite number of space-time derivatives is determined by the operator-valued Riemann zeta function through the d'Alembertian in its argument. The construction of the corresponding Lagrangians L starts with the exact Lagrangian for the effective field of the p-adic tachyon string, which is generalized by replacing p with an arbitrary natural number n and then summing over all n. We obtain several basic classical properties of these fields. In particular, we study some solutions of the equations of motion and their tachyon spectra. The field theory with Riemann zeta-function dynamics is also interesting in itself. © 2008 MAIK/Nauka. | en |
dc.relation.ispartof | Theoretical and Mathematical Physics | en |
dc.subject | Nonlocal field theory | P-adic string theory | Riemann zeta function | en |
dc.title | Zeta-nonlocal scalar fields | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s11232-008-0139-z | en |
dc.identifier.scopus | 2-s2.0-58449102756 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/58449102756 | en |
dc.relation.firstpage | 1671 | en |
dc.relation.lastpage | 1677 | en |
dc.contributor.orcid | #NODATA# | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 157 | en |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
SCOPUSTM
Citations
30
checked on Nov 24, 2024
Page view(s)
15
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.